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Recent advancements in natural language processing (NLP) have generated interest in using computers to
assist in the coding and analysis of students’ short answer responses for PER or classroom applications. We
train a state-of-the-art NLP, IBM’s Watson, and test its agreement with humans in three varying experimental
cases. By exploring these cases, we begin to understand how Watson behaves with ideal and more realistic
data, across different levels of training, and across different types of categorization tasks. We find that Watson’s
self-reported confidence for categorizing samples is reasonably well-aligned with its accuracy, although this can
be impacted by features of the data being analyzed. Based on these results, we discuss implications and suggest
potential applications of this technology to education research.
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I. INTRODUCTION

The analysis of short-answer student responses can be a
time-consuming and difficult task for researchers and edu-
cators. Industries have adapted to similar tasks by using
machine learning, particularly natural language processors
(NLP) to quickly analyze text across extremely large sample
sizes (see [1, 2] for a list of examples). NLPs are programs
founded on machine learning algorithms that process textual
or verbal information. Once trained, NLPs can perform anal-
yses such as sentiment, entity detection, and categorization.

The typical process for using a trainable NLP can be bro-
ken down into four steps:

1. Preparation: Categories are identified and a subset of
the data are coded into the categories by humans.

2. Training: The coded subset of statements is provided
to the NLP with category labels. The NLP uses this
subset to establish its categorization model.

3. Sample analysis: New statements are sent to the NLP.
For each statement the NLP returns confidence values
for each category it was trained on.

4. Categorization: Humans interpret the confidence
scores to assign a category to each statement.

Many NLP tools are now available to the public for low-
cost or free use. This technology offers potentially exciting
applications to Physics education and Physics Education Re-
searchers to perform text analysis at scales that have previ-
ously been prohibitively large; however there is not an estab-
lished methodology for the use of NLP tools within the PER
community.

Investigations into the use and trends of NLP on short-
answer text statements for education purposes has grown
swiftly since 2015 [3–6]. The results of NLPs’ efficacy have
varied in STEM research, with Cohen’s κ scores ranging from
0.09 to 0.97 [7]. Examples of NLP work done in STEM and
PER revolve around using NLPs to grade exam questions or
survey other research [8–19]. However, further exploration
of NLPs is necessary to determine how they may be utilized
for processing research data.

This work aims to add to the community’s understanding
of NLP as a text analysis tool by using IBM’s Watson to cat-
egorize short-response samples with varying levels of NLP
training and across differing data sets. Watson has the abil-
ity to analyze short-answer responses and assign likelihood
of belonging to specified categories based on IBM’s algo-
rithm and neural network methods, which are not disclosed to
the public. Through training and testing with three examples
of response categorization, we examine the confidence and
accuracy of Watson to characterize its strengths and weak-
nesses. With this, we propose two methods in which Watson
can be used to assist in coding data, one meant for research
purposes, and the other for classroom surveys.

II. METHODS

We tested Watson with three different data sources to ob-
serve trends of performance and characteristics of the soft-
ware’s algorithms and protocols. Every statement was coded
(i.e., labeled with a category) by humans prior to evaluation
by Watson. For each data set, a subset of labeled samples was
provided to Watson for training. A larger number of sam-
ples from the same data set was then provided to the trained
Watson model for assignment of confidence scores for each
category. For the scope of this paper we adopt a simplified
categorization process in which we accept the category with
the highest confidence score as the NLP-assigned category.

We evaluate the effectiveness of Watson’s categorization
by examining the confidence scores of each statement’s as-
signed category and determining the accuracy of Watson’s
categorization compared to the consensus of the human
coders. Comparing across the different data sets allows us
to understand Watson’s performance for various difficulties
of coding, sizes of training set, and mode of categorization.
Details for each of the three data sets are described in Table I.

TABLE I. A summary of the data sets used to assess Watson.

Data set No. of labels Ntest Ntraining

News Headlines 169 4 4000 169
News Headlines 1000 4 4000 1000
Lab reasoning 4 479 169
Pre-flight 2 732 398

A. News headline data

The first set of data used in this study is a series of news
headlines from different genres of news, provided by Rishabh
Misra on Kaggle [20], an online resource for developing skills
in computer science. This data set contains around 200,000
news headlines that are labeled with corresponding categories
(‘Politics,’ ‘Wellness,’ etc.). This large data set offers 41 dif-
ferent categories, making it possible to select a small sample
of categories for testing with Watson while still representing
a large number of short text samples. Although there is no
guarantee that Watson’s performance on this data will be in-
dicative of its performance on student responses to physics
questions, it demonstrates how the NLP performs in a gen-
eral categorization case which can then serve as a baseline of
effectiveness when investigating its performance in PER.

For each test of Watson with the news headline data, four
categories were selected. Short text samples belonging to
those four categories were randomly selected to form the
training set and the testing set. No samples with other la-
bels were included in the testing set. The intent of filtering
the data in this way was to examine how Watson performs in
a simplified case where all samples are considered categoriz-
able.
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The news headline data were used to evaluate Watson
across two dimensions:
• Varying training set size. Models were trained on 169 and

1000 samples using the same four categories. The low and
high training models were tested with the same set of 4000
samples.

• Varying tested categories. Two data subsets were created,
each corresponding to a different set of four category labels.
For each subset, models were trained on 1000 samples and
evaluated on 4000 samples from that subset.

B. Lab reasoning data

The second set of data comes from a lab reasoning experi-
ment in an introductory physics course. In an online assign-
ment, students were asked to explain their reasoning to sup-
port a yes/no decision to a lab-related data analysis question.
Responses were coded into four categories representing the
main type of reasoning that appeared in students’ responses.
This data set serves as an example of projects whose data
can span over multiple semesters, where such large sets can
be more approachable with NLP. It also provides insight for
how Watson deals with difficult categorization tasks.

This data was prepared by five coders in two stages: First,
using a group agreement process to establish coder train-
ing, and afterward, in pairs coding together. Interrater reli-
ability (IRR) was checked frequently throughout the coding
process and disagreements were resolved by discussion be-
tween coders. Prior to resolving conflicts, the overall IRR
(using Krippendorff’s α [21]) was α = 0.766. Generally, re-
searchers in the field aim for an IRR score of at least 0.8. We
performed the experiment despite being below the threshold
to evaluate Watson’s performance on statements across vary-
ing levels of difficulty for human coders.

These data were somewhat difficult to code, with approx-
imately 13% of samples ultimately ending up in an ‘other’
or dual-coded category due to disagreement. The training
set that was provided to Watson only contained code-able
statements; however a small number of dual-coded state-
ments were necessary to increase representation of certain
categories in the training sample.

C. Pre-flight data

The last set is a series of student responses to a pre-flight
question in an introductory physics course. Students were
asked to use physics to explain what happens in a certain sce-
nario. Their answers were coded with a binary for whether a
specific physics concept was present. This data set offers an
alternative model in which Watson may flag whether topics
are present rather than categorizing statements as discussed
in the previous two data sets.

Student statements were coded for the presence of the con-
cept by two coders. The coders had α = 0.79, close to the

generally accepted value of 0.8.

III. RESULTS

Results of Watson’s performance are presented here by
each experimental case. For each of the data sets and experi-
ment variations, we perform analysis by arranging the coded
statements by Watson’s highest confidence score to lowest,
binning into groups of 50 for small data sets (lab reasoning,
pre-flight) and 200 for large (news headlines), taking the aver-
age values for each bin, and plotting onto a graph with error
bars representing the standard error on the mean. We then
compare Watson’s labels to the respective pre-established la-
bels to establish accuracy rates for each bin. Pre-established
labels were determined by either the provided label from the
news headlines data set or from the group consensus code
designated by the human coders. Displaying the data in this
way makes it possible to see a distribution of Watson’s con-
fidence scores and determine the relationship between confi-
dence and accuracy.

A. News headline experiment

In this section we examine Watson’s performance with the
news headline data, including comparison of the low- and
high-training models and the data sets with differing cate-
gories.

FIG. 1. Watson’s accuracy versus confidence for the news data with
different training sample sizes. Each point represents 200 samples.

The results from comparing different training sizes for the
same data categories are shown in Fig. 1. For both training
models it is clear that Watson’s accuracy increases as its con-
fidence increases — in other words, the more confident Wat-
son is, the more likely it has applied a correct label. Using
a paired t-test, we find a large, significant increase in Wat-
son’s confidence between the 169 sample train size and 1000
sample train size (M = 0.57, 0.75, SD = 0.17, 0.21 respec-
tively); t(3999) = −162, p < 0.001, d = 0.92. Considering
the figure, it is apparent that this increase in confidence is
paired with an increase in labeling accuracy. This indicates
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FIG. 2. Watson’s accuracy versus confidence for different categories
of news data. Each point represents 200 samples.

that increasing the training set from 169 to 1000 significantly
improved Watson’s accuracy.

Fig. 2 shows the comparison of Watson’s performance with
two different sets of news headline data, each using 1000
samples to train and categorize 4000 samples, but for differ-
ent news headline categories. We see that Watson performs
well in both cases, with accuracy that matches or exceeds its
confidence. There is a statistically significant increase in Wat-
son’s confidence from Label Set 1 to 2 (M = 0.75, 0.82,
SD = 0.21, 0.21), t(3999) = −96.9, p < 0.001, d = 0.32.
This small to medium effect on the confidence scores indi-
cates that Watson may perform better with certain contexts
than others.

B. Lab reasoning experiment

For the lab reasoning data, we consider Watson’s confi-
dence and accuracy and compare its performance to the IRR
of the human coders. For the 479 statements tested, Watson
and the Humans had an α of 0.582, which is much lower than
the IRR between human coders.

Fig. 3 compares Watson’s accuracy to the humans’ IRR
scores for the same bins of statements. We again observe
the correlation between confidence and accuracy, like with
the news headlines experiment. However, we observe that
Watson’s agreement with humans consistently decreases as
its confidence scores decrease, while the human coders main-
tain high agreement for the same statements. This suggests
that humans may be more accurate than Watson for catego-
rizing less clear samples.

C. Pre-flight survey experiment

Fig. 3 shows a comparison between Watson and the hu-
man coders for the detection of a topic within responses from
the Pre-flight data. As with the previous two experiments, we
observe a correlation between Watson’s confidence and its ac-
curacy. We also observe that, compared to the lab reasoning
data, Watson is both more confident and more accurate over-
all. This agrees with the observation from the news headlines
case that Watson performs better in different contexts.

FIG. 3. Watson’s accuracy versus confidence when compared to hu-
man IRR for the same statements. Each point represents 50 samples.

D. Confidence cut-offs to improve accuracy

In this section we provide preliminary analysis to explore
applications for Watson in PER. Because the results from all
three data sets establish a pattern where Watson’s accuracy
increases with confidence, it may be possible to apply a “con-
fidence cutoff score” above which Watson’s accuracy may be
acceptable for certain applications.

Table II provides examples of how results of the three ex-
periments would be affected if we were to only consider state-
ments with confidence scores exceeding 0.5, 0.75, or 0.9. For
each of the three experiments we see that increasing the con-
fidence score threshold increases overall accuracy; however,
fewer samples are represented in the result. The gains from
applying these thresholds vary across data type. For exam-
ple, we note that for the Lab reasoning data applying a 0.75
threshold raises Watson’s accuracy to a value near that of the
human coders’ IRR, but only 21% of samples are considered.
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TABLE II. Average of correct samples and fraction of samples pre-
served based on confidence score threshold.

Confidence Score ≥ 0.5 ≥ 0.75 ≥ 0.9
News, 1000 train set
Accuracy 0.690 0.858 0.956
Frac. Samples 0.618 0.171 0.034
Lab Reasoning
Accuracy 0.751 0.836 0.937
Frac. Samples 0.87 0.42 0.10
Krippendorff’s α 0.623 0.719 0.879
Pre-flight
Accuracy 0.898 0.959 0.996
Frac. Samples 0.996 0.675 0.372
Krippendorff’s α 0.791 0.865 0.909

IV. DISCUSSION

The results from these experiments provide several valu-
able insights into Watson’s performance that can inform fu-
ture practice. First, across all data sets and trials Watson has
a consistent correlation between its confidence and its accu-
racy. Second, the Lab reasoning experiment and comparison
between Concept 1 and Concept 2 in the Pre-flight experi-
ment indicate that Watson is less accurate in situations where
human coders also struggle. On the other hand, statements
that are easier for humans to categorize are easier for Watson
to label accurately. Third, Watson’s performance depends on
the data provided and the categories it is trained on. As seen
with the variance in confidence plots across the experiments,
Watson does not work with all categories equally well, and
training will also greatly affect its understanding. This sug-
gests that variables such as number of categories, complexity
of statements, and coding scheme is more important for Wat-
son’s performance than humans’.

A. Watson’s confidence as a guide

The correlation between Watson’s confidence and accuracy
may offer opportunities for semi-automated coding. By ar-
ranging the statements Watson codes from lowest score to
highest, one could work alongside Watson, treating it as a
second coder. In such a model, humans can code state-
ments, train Watson, let Watson process the remaining data,
then compare results and resolve disagreements by them-
selves. When coding in this way the researcher can expect
to have to resolve many disagreements for the low confidence
scores, but will eventually reach a threshold confidence score
at which they deem Watson to be consistent enough to entrust
all remaining statements to it.

Pair coding can potentially reduce the amount of work
done by coders in situations with less confidence in the NLP.
In the optimal case, Watson will perform excellently and
workload can be cut down. In the worst case scenario, hu-

man coders will have to go through all statements. However,
since the time required to train Watson is already necessary
when coding all statements, no extra time is needed to run
Watson, and therefore there is no net loss.

This scheme is a potentially useful tool for physics educa-
tion research. Studies that require the coding of large data
sets can be processed faster by partnering with trained NLPs.

B. Watson as a classroom analyzer

In situations where Watson does not have to be perfect, the
software performs well enough to do categorization for rough
analysis. An example of this kind of scenario is similar to the
Pre-flight experiment, where Watson was trained to detect if
student responses contain discussion of specific topics. In
such a case Watson’s results could be arranged to provide a
statistical breakdown of what students were thinking without
needing to worry about the exact number of times a given
concept appears.

This form of analysis, when combined with students’ re-
sponses to other related questions, can provide an efficient
and handy synopsis tool for instructors to understand their
class’ understanding in preparation for lectures. In terms of
preparing the NLP for this scenario, once the scripts for train-
ing and testing are setup, as long as the format of the ques-
tions are the same, nothing should need to be changed for any
future analysis.

V. CONCLUSION

In this paper we showcased the capabilities of a state-of-
the-art NLP software and potential methods for utilizing it
in both PER and classroom settings. While it is not de-
veloped enough yet to meet the PER community’s expecta-
tions of a reliable coder, it is intelligent enough to convey
when statements are too difficult for it to handle. By being
aware of NLPs’ limitations and characteristics, research can
be adapted to implement these software to reduce workload
or perform rough analysis.

This work highlights the benefits that NLPs bring to PER
work, though there are methods to this research and applica-
tion that we did not cover. Future work should analyze alter-
native ways to use confidence scores to interpret NLP results.
There should also be investigations into how NLPs should be
trained or how data sets should be prepared to improve model
accuracy. With more research done on how to optimize NLPs,
they can become an effective assistant for short-answer pro-
cessing.
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Information Technologies 25, (2020).

[9] Butcher, P. & Jordan, S. A comparison of human and computer
marking of short free-text student responses. Computers amp;
Education. 55, 489-499 (2010)

[10] Cvetkovic, L., Milasinovic, B. & Fertalj, K. A tool for simpli-
fying automatic categorization of scientific paper using Watson
API. 2017 40th International Convention On Information And
Communication Technology, Electronics And Microelectronics
(MIPRO). (2017)

[11] Madnani, N., Loukina, A. & Cahill, A. A large scale quan-
titative exploration of modeling strategies for content scoring.
Proceedings Of The 12th Workshop On Innovative Use Of NLP

For Building Educational Applications. (2017)
[12] Erickson, J., Botelho, A., McAteer, S., Varatharaj, A. & Hef-

fernan, N. The automated grading of student open responses in
Mathematics. Proceedings Of The Tenth International Confer-
ence On Learning Analytics amp; Knowledge. (2020)

[13] Mohler, M. & Mihalcea, R. Text-to-text semantic similarity
for automatic short answer grading. Proceedings Of The 12th
Conference Of The European Chapter Of The Association For
Computational Linguistics On - EACL ’09. (2009)

[14] Sultan, M., Salazar, C. & Sumner, T. Fast and easy short an-
swer grading with high accuracy. Proceedings Of The 2016
Conference Of The North American Chapter Of The Associ-
ation For Computational Linguistics: Human Language Tech-
nologies. (2016)

[15] Süzen, N., Gorban, A., Levesley, J. & Mirkes, E. Automatic
short answer grading and feedback using text mining methods.
Procedia Computer Science. 169 pp. 726-743 (2020)

[16] Zehner, F., Sälzer, C. & Goldhammer, F. Automatic coding
of short text responses via clustering in educational assess-
ment. Educational And Psychological Measurement. 76, 280-
303 (2015)

[17] Nehm, R., Ha, M. & Mayfield, E. Transforming Biology As-
sessment With Machine Learning: Automated Scoring of writ-
ten evolutionary explanations. Journal Of Science Education
And Technology. 21, 183-196 (2011)

[18] Ha, M., Nehm, R., Urban-Lurain, M. & Merrill, J. Apply-
ing computerized-scoring models of written biological expla-
nations across courses and colleges: Prospects and limitations.
CBEâLife Sciences Education. 10, 379-393 (2011)

[19] Liu, O., Rios, J., Heilman, M., Gerard, L. & Linn, M. Valida-
tion of automated scoring of science assessments. Journal Of
Research In Science Teaching. 53, 215-233 (2016)

[20] https://www.kaggle.com/datasets/rmisra/
news-category-dataset. Retrieved 12/15/2021

[21] K. Krippendorff, Content Analysis: An Introduction To Its
Methodology, 3rd ed. (Thousand Oaks, CA, 2013), pp. 221-
250.

87


