
Scaling Tweet Reply Ranking 
to Tens of Million of QPS

Rishabh Misra
Machine Learning Engineer 
Content Quality @ Twitter



3,008,107,408



Outline

● Conversations product surface 

● High-level overview of ranking pipeline

● Traffic nature and growth

● Scaling Approach

○ Measuring system load

○ Defining quality of replies

○ Identifying quantity of candidates to prune

○ Experimentation

● Key Results

● Q&A



● When users click on any tweet on Twitter, they are taken to 

the Conversation page.

● On the page, users can see the conversation happening 

around the clicked tweet in form of nested replies.

Conversations Page

https://docs.google.com/file/d/1THiMkjAf8v--xPPtBB91WOiRc5Eltd_g/preview


Conversations on Twitter
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Goal of ranking models is to surface engaging & healthy replies that are personalized to viewers taste
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∝ number of features * numbers of candidates

most expensive



Due to various product and ranking improvements, 

the service has been seeing organic growth in usage 

over the last few years.
○ Pictured is served tweets more than doubled over 15 

months period (12B -> 28B)

Traffic Nature and Growth
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When tweets goes viral (and external websites embed 

such tweets), the service experiences sharp increases 

in traffic. 
○ Pictured is when BTS tweets went viral. Peak in recent 

times has been >20M.
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We thought about the problem from two perspectives:

● Computational perspective: reduce computations in the pipeline under higher system loads to 
make the service more robust.

● Business perspective: Make sure the scaling efforts keep the impact to key product metrics 
minimal to none.

We used computational perspective to shape the scaling strategy, and business perspective to refine 
the strategy.

Scaling the Pipeline



● Measure system load

● Define quality of replies early in the pipeline

● Calculate quantity of candidates to prune

● Iterate with experimentation

Scaling the Pipeline
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Since our strategy would be tied to identifying system load, we should think about factors that convey 
service’s health. Some ideas:

● Success Rate

● Throughput

● Latency

Measure System Load



Since our strategy would be tied to identifying system load, we should think about factors that convey 
service’s health. Some ideas:

● Success Rate

● Throughput

● Latency (we selected p9999 latency to identify system load)

Measure System Load



● Identify the signals that can be used early on in the pipeline to quickly identify candidates’ 
quality. There are some considerations:
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● Identify the signals that can be used early on in the pipeline to quickly identify candidates’ 
quality. There are some considerations:

○ Feasibility of getting the signals early on in the pipeline.
■ Does pipeline requires restructuring?

○ How many signals to consider?
■ Using intuition, restrict the initial set to a minimal.
■ Incrementally add signals as needed based on experimentation results.

○ Low latency way to compute quality based on the signals.
■ Model vs rule-based?
■ Evaluate speed and scope of improvement.

● We included engagement-based (e.g. engagement counts), health-based (e.g. toxicity / report 
model scores), and tweet metadata-based (e.g. if tweet is written by viewer) signals to define 
the quality using rule-based approach.

Define Quality
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■ Device a system load factor
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● To identify quantity of candidates to prune, we thought about following aspects:
○ How much should pruning vary as system load increases?

■ Device a system load factor
○ Under a given system load, how much should pruning vary based on request size?

■ Device a request size factor
○ Can pruning affect product experience in some cases?

■ Requests with small number of candidates (e.g < 60)
○ Should we prune if system is not under load?

■ Considerations: 
● Key product metrics should remain flat
● Heavy ranking should still have sufficient candidates to have scope of 

improvements in future. 

Identify Quantity



● Iterate on the strategy keeping business goal in mind - that is, user experience should not be 
affected during high system load.
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● Iterate on the strategy keeping business goal in mind - that is, user experience should not be 
affected during high system load.

● Perform extensive A/B testing to iterate on how quality is defined:
○ Identify areas of product metrics losses.
○ Iterate on adding more quality signals and refining the rule-based heuristic.

■ Perform offline data analysis as needed.

● Perform A/B testing to iterate on identifying range of pruning:
● Decide lower range based on how much faster we need our pipeline to be.
● Upper range such that no effect on product metrics.
● Then, graceful degradation mechanism varies the pruning range based on system load.

● After production launch, run a holdback A/B experiment to continuously monitor the effect of 
scaling over longer term.

Experimentation



● No impact on key product metrics.

● We could prune up to ~55% candidates early in the pipeline without impacting key product 

metrics. (Long term holdback is also flat after several months of launching)

● Pipeline’s p99* latency reduced by >15% and graceful degradation made it more robust under 

higher load.

● We implemented monitoring dashboard to track the pruning behavior and added relevant 

alerts.

Key Results



Questions?
📨 rmisra@twitter.com

rishabh_misra_

mailto:rmisra@twitter.com
https://twitter.com/rishabh_misra_


Thank you.


